Cosynus is dedicated to creating innovative strategies for bioproduction from microbial cell factories by utilizing renewable carbon sources as a sustainable alternative to petrochemical sources. We are actively working on implementing synthetic biology tools and strategies to transform our chassis strain, the yeast Yarrowia lipolytica, into an industrial cell factory producing value-added molecules like pigments and terpenes. To improve productivity and to alleviate bottleneck like metabolic burden arose from massive genetic engineering, we are setting up synthetic consortia with « division of labor » strategy. Our emphasis is on developing methodologies to establish community systems and understanding metabolic interaction within synthetic consortia.
With the increasing environmental and energy concern, microbial production is regarded as a promising alternative to petrochemical-derived products or plant-based extraction. In order to accelerate development of chassis strains for bioproduction, we are extending and developing synthetic biology tools for the yeast Yarrowia lipolytica but also other non-conventional yeasts to broaden the range of platform chassis as microbial cell factories. Our particular focus involves the standardization and modularization of GoldenGate bioparts and the development of CRISPR/Cas9 genome-editing tools in yeasts.
However, a lack of fundamental knowledge in the physiological metabolic behaviour of synthetic communities poses a challenge. The current limitations in tools for achieving stable and controlled systems are a major bottleneck for biotechnology applications. Our focus is on comprehending the interactions among various strains and species, including yeast and bacteria. We aim to design and construct robust and stable synthetic communities using syntrophy and interdependence. Additionally, we are exploring innovative approaches such as orthogonal population growth control to overcome these challenges. In addition to enhancing our fundamental understanding, we aim to establish stable synthetic communities as novel industrial chassis systems for biotechnology applications by implementing synthetic pathways into the synthetic community system.
All the team publications are available in the COSYNUS-MICALIS HAL collection.