Search
Close this search box.

PIAM

Ferments of the Future distributed platform

Ferments du Futur is a public-private partnership set up to accelerate research and innovation in ferments, fermented foods and biopreservation, thereby promoting safer, healthier and more sustainable food systems. The Ferments du Futur ecosystem is based on an innovation centre located at the heart of the Paris-Saclay cluster and a technology platform distributed across seven INRAE research units specialising in microbiology, process engineering, microbiome, AI and modelling. The PIAM Micalis distributed platform provides an integrated approach to the study of microbial interactions within structured food matrices. It comprises a sequence of steps – Print, Image, Analytics and Micro-fermenters (PIAM) – to study the behaviour of different micro-organisms such as bacteria, moulds, yeasts and viruses in food matrices.

Romain Briandet

Coordinator

The PIAM distributed platform provides an integrated approach to studying microbial interactions within structured food matrices. The PIAM platform supports research efforts in food microbiology and microbial ecology, offering applications in industrial fermentation, assessments related to health-focused microorganisms, and the development of innovative microbial consortia for food.

New approaches and creative experimental designs are emerging to study previously unexplored aspects of bacterial behaviour in spatially structured populations. The PIAM (Print > Image > Analysis > Microfermenters) platform establish an integrated pipeline to describe and model microbial interactions and resulting emergent functions in structured food matrices. This pipeline can be applied to bacteria, moulds, yeasts, viruses and their associations in simplified printable gel matrices. The pipeline is designed to feed synthetic microbial ecology approaches in which community complexity and drivers are minimised but controllability is enhanced, allowing interactions and ecological theories to be explored. In addition to their use in basic research, synthetic microbial ecosystems have also found their way into various industrial applications.

In this line, the PIAM pipeline will allow to take into account the 3D structures of matrices and communities in industrial fermented products. The pipeline is adapted to evaluate the beneficial health effects of selected microorganisms in structured food matrices (ferments, biopreservatives, probiotics). It will be used to design new functionalities of food microbial consortia for the fermentation of new nutritive sources and to develop innovative methods to assemble consortia based on spatial interaction modelling. The facility implementation project is divided into two phases, starting with the installation of the MICA wide-field microscope and BioLector microfermenters commissioning in 2024. The second investment phase, aimed at completing the pipeline, is scheduled for 2025.

Services

Team members

Julien DESCHAMPS

Romain BRIANDET

Stéphane CHAILLOU

Killian CUISSINAT DAGUES

Julien TAP